图1 主轴系统示意图 1.1机械部分 (1)轴承。滚动轴承工作时,滚子与滚道间的滑动摩擦、滚动摩擦和扭动摩擦使滚子与滚道接触的表面产生疲劳、磨损、腐蚀、断裂、压痕和胶合等失效形式。引起轴承失效的原因有很多。如润滑不良、载荷过大、冲击载荷、转速过高等; (2)齿轮。齿轮失效不仅与长期工作或者恶劣的工作环境有关,还与齿轮的加工、安装、润滑维护等有很大的关联。齿轮失效大都发生在齿面上,容易发生点蚀、剥落、磨损、疲劳、断齿和胶合等失效形式; (3)主轴。主轴常见的故障主要有不平衡、不对中、支撑松动等。当主轴出现以上故障时,主轴会产生与转速同步的周期激振力。从而引起主轴振动加剧。振动的强烈程度与主轴旋转速度有关,旋转速度越大振动越大。 1.2电气部分 主轴电机在运行中容易受到电、热、机械、周围环境等各种因素的影响,使其性能逐渐下降,最终发生故障。主轴电机常见的故障主要有以下4种:气隙偏心、轴承磨损、转子断条以及定子故障 。 2、基于故障机理的监测方案 本文基于故障机理研究,针对主轴系统的4大部件设计了一套实时监测方案。本文监测方案具体分为两部分,一部分针对主轴和轴承,一部分针对齿轮和主轴电机。 2.1 振动法监测轴承和主轴 轴承产生磨损等失效形式后,工作过程中可能产生振动、温升、噪声等方面的征兆。由于振动信号携带了丰富的运行状态信息,且容易处理和分析,故振动分析是最有效的故障分析手段。同理,主轴也可以通过振动分析较好地监测其故障情况。轴承的特征频率如下 :
式中Z为滚动轴承内圈或主轴的旋转频率;d为滚动体直径;D为轴承节径;z为滚动体个数;a为压力角。当主轴出现不平衡、支持松动等问题时,其激振引起的特征频率是主轴旋转频率的倍频k,,I|}=1,2,3。且由于轴承是安装在主轴上随着主轴一起做旋转运动的,所以只要在主轴外壳上安装一个加速度传感器,就可以兼顾监测主轴和轴承的故障情况。 2.2 定子电流法监测齿轮和主轴电机 由于电流传感器价格低廉,安装方便,采用非侵入式的检测方式,对系统本身不会产生影响,广泛应用于工业中,故本文使用霍尔电流传感器监测主轴电机和齿轮的故障情况。 已有的研究表明 ,齿轮磨损等退化形式产生后都会引起齿轮回转轴扭转振动,从而引起电机扭矩波动,并最终通过定子磁通变化引起定子电流变化。因此,可以通过分析定子电流频率的变化来判断齿轮部件是否发生故障。式(5)为齿轮存在故障时感应电机某相电流的简化计算公式
式中Z为电源频率∥和妒为感应电机定子电流的频率及相位。 从式(5)可以看出,只要齿轮出现磨损等故障时,都会在电机电流信号中产生以电源频率为中心的边频带∽一厂和Z+一。因此,定子电流频谱分析法是有效的齿轮故障监测手段。 由于异步电机气隙较小,对磁动势和磁拉力的不平衡很敏感,所以当主轴电机出现气隙偏心、轴承磨损等故障形式时,气隙中会产生谐波磁通量,从而使得定子线圈中产生感应电流”“J。电机故障产生的特征频率如下:气隙偏心
式中Z为电源频率;s为转差率;p为电机极对数;m=1,2,3,?;k/p=l,5,7,1l,?沉.。为轴承内圈、外圈、滚动体的特征频率之一。值得指出的是,在实际应用中,虽然特征频率的计算值与实际值接近,但实际频谱的谱峰值并不一定精确地等于理论计算值。尽管如此,特征频率在轴承等故障检测中仍有效且便捷,所以在实际应用中可以先计算出轴承等部件的特征频率,作为下一步性能退化检测的理论依据。 3、实验和数据分析 本文实验选取数控车床NEF400核心部件主轴和轴承及其振动信号作为研究对象。使用加速度传感器(KISTLER型号833083)测量主轴和轴承的振动信号,NI采集卡采集(NI 9234,LabVIEW编写采集程序),振动信号采样频率为10 kHz,采样时间为10 s。本实验主要是为了检测主轴和轴承部件是否发生故障,分别对机床主轴在600、1 200和1 800 r/rain速度空转情况下的振动信号进行采集,且仅对转速在1 800 r/min情况下的信号进行分析。轴承几何尺寸分别为,滚动体直径d=12.7 mm;轴承节径D=70 mm;滚动体个数。=10;压力角a=0。 表1 滚动轴承特征频率 采集到的振动信号时域波形图如图2所示,从振动信号时域图是看不出是否有故障,所以先对信号进行消噪,再采用dbl0正交小波基进行4层小波分解,分解结果如图3所示。 图2 原始信号时域波形图 图3 第1—4层细节图 为提取故障特征频率,对第一层细节信号d。做Hilbert包络并进行谱分析,其结果如图4所示。 图4 d。细节信号包络谱图 从图中可以明显地看到冲击频率出现在123.5 Hz与246 Hz处,与轴承外圈通过频率122.8 Hz及其二倍频245.6 Hz接近。停机检查发现轴承外圈有磨损,与监测方案诊断的结果一致。 4、结束语 本文基于主轴系统故障机理设计了一种监测方案,能以最少的传感器监测数控机床主轴系统主要部件的健康状况,利用小波分析技术对监测信号进行处理,可以有效地判定主轴系统是否发生故障,并且准确地识别出故障发生的部位。结果表明,本方案对机床主轴系统故障监测和诊断是可行的。
本文来源于互联网,我们本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。
我们公司主营柔性振动盘、柔性供料器、柔性上料工作站、柔性振动盘、柔性生产线、柔性自动上料系统、并联机器人摆盘机、视觉自动分拣设备、非标自动化设备、视觉检测机等业务,厂家直营,支持定制,免费获取全套方案。
本文来源于互联网,我们本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。